Seri ketiga dari seri tulisan mengenai statistik non-parametrik ini, akan membahas mengenai Statistik Uji Kruskal-Wallis, contoh perhitungan manualnya dan aplikasi pada program statistik SPSS. Analisis varians satu arah berdasarkan peringkat Kruskal-Wallis pada statistik non-parametrik dapat digunakan pada sampel independent dengan kelompok lebih dari dua. Statistik uji Kruskal-Wallis dapat dituliskan sebagai berikut: Dimana: N = jumlah sampel Ri = jumlah peringkat pada kelompok i ni = jumlah sampel pada kelompok i Untuk memahami rumus prosedur tersebut, diberikan contoh sebagai berikut: Sebuah perusahaan ingin mengetahui apakah terdapat perbedaan keterlambatan masuk kerja antara pekerja yang rumahnya jauh atau dekat dari lokasi perusahaan. Misalkan jarak rumah dikategorikan dekat ( kurang dari 10 km), sedang (10 – 15 km) dan jauh ( lebih dari 15 km).
Keterlambatan masuk kerja dihitung dalam menit keterlambatan selama sebulan terakhir. Penelitian dilakukan pada tiga kelompok pekerja dengan sampel acak, dengan masing-masing sampel untuk yang memiliki jarak rumah dekat sebanyak 10 sampel, jarak sedang sebanyak 8 sampel dan jauh sebanyak 7 sampel.
Data hasil penelitian dan prosedur untuk mendapatkan statistik uji Kruskal-Wallis diberikan pada tabel berikut: Kolom (1), (2) dan (3) adalah data pekerja menurut jarak rumah dan menit keterlambatan. Kolom (4), (5) dan (6) adalah rangking dari keterlambatan. Rangking disusun dari nilai keterlambatan terkecil sampai terbesar, tanpa membedakan kelompok jarak rumah pekerja. Selanjutnya lakukan penjumlahan rangking untuk masing-masing kelompok, yang terlihat pada baris Ri. Kemudian, kuadratkan masing-masing jumlah peringkat tersebut. Dari data tersebut, maka dapat dihitung statistik uji Kruskal-Wallis sebagai berikut: Dalam SPSS, untuk perhitungan statistik uji Kruskal-Wallis mengikuti tahapan sebagai berikut: 1.
Berikan kode numerik untuk variabel jarak yaitu 1 = jarak dekat, 2 = jarak sedang dan 3 jarak jauh. Data menit keterlambatan tidak perlu diperingkat, karena secara otomatis akan dilakukan oleh program SPSS. Persiapkan worksheet dengan cara, buka program SPSS, klik Variable View. Akan muncul tampilan berikut: Pada baris pertama, isikan kolom Name dengan Jarak, Measure = Ordinal dan kolom Values dengan 1 = Dekat, 2 = Sedang, 3 = Jauh. Abaikan kolom lainnya. Pada baris kedua isikan, kolom Name dengan Keterlambatan.
Kolom lainnya diabaikan (mengikuti default dari program). Cara pengisian kolom Values sebagai berikut. Klik icon yang bertanda titik tiga pada kolom Values pada baris 1, akan muncul tampilan berikut: Isikan angka 1 pada kotak Value dan Dekat pada kotak Label. Kemudian klik Add. Isikan angka 2 pada kotak Value dan Sedang pada kotak Label, kemudian klik Add. Iskan angka 3 pada kotak Value dan Jauh pada kotak Label, kemudian klik Add. Selanjutnya klik OK, dan kembali ke menu data dengan mengklik Data View Selanjutnya klik Data View untuk mulai mengisi data 3.
Input data kategori jarak (1, 2, 3) dan menit keterlambatan pada workheet SPSS. Setelah pengisian data, kemudian Klik Nonparametric Tests K Independent Samples. Akan muncul tampilan berikut: Isi kotak Test Variable List dengan Keterlambatan dan isi Grouping Variable dengan Jarak. (Catatan: variabel Keterlambatan dan Jarak, sebelumnya berada di kotak sebelah kiri.
Pindahkan ke kotak sebelah kanannya dengan cara klik variabel, kemudian klik panah yang menuju kotak kanannya.). Centang juga Kruskal-Wallis H jika belum tercentang.
Selanjutnya klik Define Range, akan muncul tampilan berikut: Isikan kotak Minimum dengan angka 1 dan Maximum dengan angka 3. Klik Continue, dan klik OK. Akan keluar output SPSS sebagai berikut: Output tabel pertama memberikan deskripsi dari ranking masing-masing kelompok jarak, berupa jumlah sampel dan rata-rata ranking. Output tabel kedua memberikan nilai Chi-Square dari statistik uji Kruskal-Wallis sesuai dengan rumus yang telah dibahas sebelumnya.
Derajat bebas (df) dari statistik chi-square ini adalah jumlah kelompok (dalam kasus kita = 3 ) dikurangi 1. Dalam output juga diberikan P-value untuk chi-square ini (nilai Asymp. Dalam tabel output kedua. Dalam pengujian hipotesis, kita membandingkan nilai P-value ini dengan tingkat signifikansi pengujian (α), dengan kriteria tolak H0 jika P-value α. Jika pengujian menggunakan α = 10%, terlihat bahwa nilai P-value = 0,137 α = 0,1. Dengan demikian secara statistik dapat disimpulkan tidak ada perbedaan keterlambatan antara pekerja yang memiliki rumah dekat dengan rumah jauh.
Cara lain dalam pengujian hipotesis ini adalah dengan membandingkan nilai chi-square yang diperoleh nilai-nilai kritis pada tabel Distribusi chi-square. Tabel tersebut umumnya tersedia pada lampiran buku-buku yang membahas mengenai statistik non-parametrik. Tulisan Terkait.
head(airquality) Ozone Solar.R Wind Temp Month Day 1 41 190 7.4 67 5 1 2 36 118 8.0 72 5 2. Problem Without assuming the data to have normal distribution, test at.05 significance level if the monthly ozone density in New York has identical data distributions from May to September 1973. Solution The null hypothesis is that the monthly ozone density are identical populations. To test the hypothesis, we apply the kruskal.test function to compare the independent monthly data.
The p-value turns out to be nearly zero (6.901e-06). Hence we reject the null hypothesis.